
Kavya Pearlman

Global Cybersecurity Strategist - Wallarm
@KavyaPearlman | @Wallarm

Rob Richardson

Technical Evangelist - MemSQL
@Rob_Rich | @MemSQL

Kubernetes Security
Zooming In, Zooming Out
A comprehensive Container Security Strategy

Introducing Kavya...

Kavya Pearlman

● Well known as the “Cyber Guardian”

● Cybersecurity Strategist at Wallarm

● An Award-winning Cybersecurity Professional

● Founder and CEO of XR Safety Initiative

● Former Information Security Director Linden Lab

● Former Facebook Third Party Security Risk Advisor

Personal interests

Travel, Gaming, Virtual Worlds

Introducing Rob...

Rob Richardson

● Tech Evangelist for MemSQL

● Microsoft MVP

● Leads the Southeast Valley .NET User Group

● AZGiveCamp Organizer

Personal interests

Travel, Coding, and Teaching

Agenda

Let's Talk About Kubernetes!

● Overview of Containers

● Monolithic vs Microservices

● What is Kubernetes and its Benefits

● Securing K8 - Zooming in

 Essentials to build a secure Kubernetes environment

● Securing K8 - Zooming Out

 Do’s and Don’ts for Containerized Environments

● Conclusion

Kubernetes - Getting started

KUBERNETES NEEDS NEW SECURITY MINDSET

Cloud-native applications and infrastructure create several new
challenges for all of us security professionals. We need to establish
new security programs, have a new mindset and adopt advanced new
tools that are focused primarily on securing cloud-native
technologies.”

- Kavya Pearlman

Monolith vs. Microservices

User Interface

Business Logic

Data Layer Microservice

User Interface

Microservice Microservice

DATA SOURCE DATA SOURCE DATA SOURCEMONOLITH APPLICATION DB

Containers vs. VMs

SERVER

Host OS

Hypervisor

Guest OS

Bins/
Libs

App
A

Guest OS

Bins/
Libs

App
A’

Guest OS

Bins/
Libs

App
B

VIRTUAL MACHINE

Bins/Libs

App
A

SERVER

Host OS

Container Orchestrator

Bins/Libs

App
A’

App
B

App
B’

App
B’

App
B’

Containers are isolated, but share OS and, where
appropriate, bins/libraries

CONTAINERS

What is Kubernetes?

API Server

Controller
Manager

Scheduler

etcd

Kubelet cAdvisor Kube-Proxy

Pod Pod Pod Pod

Kubelet cAdvisor Kube-Proxy

Pod Pod Pod Pod

Kubernetes Master

Kubernetes Node Kubernetes Node

Developer/
Operator

Users

Avoid vendor lock-in Bring new products

to market faster

Enjoy peace of mind that

your applications are
always on

Kubernetes self-heals

Kubernetes auto-scales

Benefits of using Kubernetes

Free community support
or paid professional

services

It’s the de facto standard
for running cloud-native

applications at scale

Benefits of using Kubernetes

Kubernetes - Zooming In
The Essentials for Building
a Secure Kubernetes Environment

Caused by lack of
K8 security Essentials

Exploited Weakness

API configuration flaw

Type of attack

SSRF Attack whereby

metadata used to steal API

keys and credential packets

Effect

Thousands of stores and

store-clients information was

exposed

Shopify Breach

Caused by lack of
K8 security Essentials

Exploited Weakness:

Kubernetes instance and an

insecure administrative

console

Type of attack

False credentials

Effect

The total scope of the breach

is yet unknown

Tesla Breach

What is Docker?

Dockerfile Image docker hypervisor

Container

Docker ecosystem, infographic by Rob Richardson robrich.org

docker-compose.yml Images docker hypervisor

Docker swarm

Docker hub

What is Kubernetes?

Dockerfile Image docker hypervisor

Container

Docker ecosystem, infographic by Rob Richardson robrich.org

docker-compose.yml Images docker hypervisor

Docker swarm

Docker hub

“
Namespaces

“
“K8s does not provide a mechanism to enforce security across Namespaces.

You should only use it within trusted domains and not use when you need to

be able to provide guarantees that a user of the cluster or pods be unable to

access any of the other Namespaces resources”

 --GCP Team

tl;dr: A namespace is not a security boundary for inter-pod communication.

Roles and ClusterRoles are a whitelist; essentially a list of the allowed permissions.

RoleBindings and ClusterRoleBindings marry users to roles:

● Subject includes the person, place, or thing that has been whitelisted.

Ex) a developer, DevOps, a team member, user, or process.

● Resource is the kind of object

Ex) pod, service, the cluster itself, or another logic instance related to Kubernetes.

● Operations that are whitelisted are action we permit the system to do. It's an action related to REST method.

● Namespace is the kubernetes section that is allowed.

Role based access control (RBAC)

“By default, pods are not isolated; they accept traffic from any source.” - GCP

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Network Policies

Secure traffic
between containers

using service mesh tools like Istio

Disable legacy APIs
etcd access from worker nodes

(Shopify)

Restrict API/
Dashboard access

(Tesla)

Kubernetes: Pod security policies

Note: Don’t run as Root

Run as non-root user Smallest base container Don’t install
unnecessary software

Config File in Container
must trust developers,

registry, git repo

Environment Variables
Must trust operations

External Key Vault
Must change application

Configuration Management

Note: RBAC is usually best

Kubernetes API request lifecycle

Authentication /
authorization

Persisted to
ETCDAPI

request

Mutating
admission
controllers

Mutating
admission
webhooks

Validating
admission
controllers

Validating
admission
webhooks

API
HTTP handler

Object
schema

validation

APPLICATION SECURITY

AppSec follows from the above security methods.

Attacks can come from multiple directions. Separate application-specific vulnerabilities

● Orchestrator vulnerabilities

● Container content vulnerabilities

● Client-side elements

You cannot secure Kubernetes without securing applications.

Note: Microservice environments are very useful, but they are not safe without special measures.

What Next?

Kubernetes - Zooming Out
Do’s and Don’ts for Containerized Environments

DEPLOY

RUNBUILD

Artifact Download

CI/CD pipeline

Container Runtime
Environments

Host Runtime

Workload at Runtime

Orchestrator

Container Registries

Build. Deploy. Run.

RUN IMAGES ONLY FROM
TRUSTED SOURCES

USE CONTAINER-NATIVE
MONITORING TOOLS

CREATE IMMUTABLE
CONTAINERS

DOs for Containerized Environments

Don’t install an operating system in a container

Don’t run unnecessary services

NOT To Dos for Containerized Environments

Don’t store critical data in a container

DON’T run a container as root

Don’t put hard-coded credentials for accessing Registry

 @KavyaPearlman

www.wallarm.com

Kavya Pearlman

@rob_rich

robrich.org

Rob Richardson

https://robrich.org/

